Section 4.5 L'Hôpital's Rule and Indeterminate Forms

(1) Refresher: Determinate and Indeterminate Forms
 (2) L'Hôpital's Rule
 (3) Comparing Growth of Functions

The Form of a Limit

The **form** of a limit $\lim_{x \to c} \square$ is the expression resulting from substituting x = c into \square .

The form of a limit is **not** the same as its value! It is a **tool for inspecting** the limit.

 $\lim_{x \to 0} x^{\arctan(x)} : \text{ form } 0^0 \qquad \lim_{x \to \infty} (1+x)^{\frac{1}{x}} : \text{ form } \infty^0$ $\lim_{x \to 0} \cos(x)^{\frac{1}{x}} : \text{ form } 1^\infty \qquad \lim_{x \to 0^+} \ln(x)\sin(x) : \text{ form } 0 \cdot \infty$

Indeterminate Forms are called indeterminate because they represent limits which may or may not exist and may be equal to any value. The form itself does **not** indicate the value of the limit. There are 7 indeterminate forms.

 $+0\cdot\infty$ ∩0

Indeterminate Forms

These two indeterminate forms are like "tugs-of-war" between the numerator and denominator. Which of the two grows faster?

L'Hôpital's Rule

L'Hôpital's Rule

If f and g are differentiable near x = a and either

(i)
$$\lim_{x \to a} f(x) = 0$$
 and $\lim_{x \to a} g(x) = 0$, or
(ii) $\lim_{x \to a} f(x) = \pm \infty$ and $\lim_{x \to a} g(x) = \pm \infty$,

then

$$\lim_{x\to a}\frac{f(x)}{g(x)} = \lim_{x\to a}\frac{f'(x)}{g'(x)}.$$

The rule applies equally for one-sided limits.

Example 1:

These limits are of form 0/0. The steps marked $\stackrel{LHR}{=}$ use L'Hôpital's Rule.

(a)
$$\lim_{x \to 0} \frac{\sin(x)}{x}$$

(b) $\lim_{x \to 0} \frac{\ln(x^2 + 1)}{x}$
(c) $\lim_{x \to 2} \frac{x^4 + 2x - 20}{x^3 - 8}$

Example 2:

These limits are of form $\frac{\infty}{\infty}$. The steps marked $\stackrel{LHR}{=}$ use L'Hôpital's Rule.

(a)
$$\lim_{x \to \infty} \frac{3x - 7}{6x + 5}$$

(b)
$$\lim_{x \to \infty} \frac{\ln(x)}{x}$$

(c)
$$\lim_{x \to 0^+} \frac{\ln(x)}{\ln(\sin(x))}$$

Example 3:

Sometimes it is necessary to perform L'Hôpital's Rule multiple times.

(a)
$$\lim_{x \to 0} \frac{e^x - x - 1}{\cos(x) - 1}$$
 (0/0)
(b) $\lim_{x \to \infty} \frac{-3x^3 - 20x^2}{2x^3 + x + 7}$ (∞/∞)

L'Hôpital's Rule: Warnings

Warning #1:

L'Hôpital's Rule only applies to the indeterminate forms 0/0 and ∞/∞ . Before applying L'Hôpital's Rule to a limit, verify that it is of one of those two forms.

Warning #2:

Don't confuse L'Hôpital's Rule with the Quotient Rule! They have completely different uses.

- L'Hôpital's Rule is for evaluating limits.
- The Quotient Rule is for evaluating derivatives.

The Form $\infty - \infty$

To evaluate limits with the form $\infty - \infty$, use algebra to rewrite the expression as a quotient, often in 0/0 or ∞/∞ form. Often this means finding a common denominator.

Example 4: To evaluate $\lim_{x\to 0^+} \left(\frac{1}{x} - \csc(x)\right)$, which has the form $\infty - \infty$, rewrite it:

$$\frac{1}{x} - \csc(x) = \frac{1}{x} - \frac{1}{\sin(x)} = \frac{\sin(x) - x}{x\sin(x)}$$

This is an 0/0 form, so we can apply L'Hôpital's Rule:

$$\lim_{x \to 0^+} \frac{\sin(x) - x}{x \sin(x)} \stackrel{LHR}{=} \lim_{x \to 0^+} \frac{\cos(x) - 1}{x \cos(x) + \sin(x)} (0/0)$$
$$\stackrel{LHR}{=} \lim_{x \to 0^+} \frac{-\sin(x)}{-x \sin(x) + 2\cos(x)} = 0$$

The Form $0 \cdot \infty$

Limits with the form $0 \cdot \infty$ can easily be converted to 0/0 or ∞/∞ form. If $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = \infty$, then

Examples (5): (a) $\lim_{x \to 0^+} x \ln(x)$

(b)
$$\lim_{x \to \frac{\pi}{2}^{-}} \left(x - \frac{\pi}{2}\right) \tan(x)$$

For limits of the forms 1^{∞} , 0^{0} , or ∞^{0} , the key step is to rewrite

$$\lim_{n \to c} \blacksquare = \lim_{x \to c} e^{\ln(\blacksquare)} = \lim_{x \to c} \exp(\ln(\blacksquare)) = \exp(\lim_{x \to c} \ln(\blacksquare)).$$

- The second equality is valid by the Limit Laws (see §2.4) because e^x is continuous everywhere.
- The "exp" notation avoids humongous expressions in superscript.

This technique changes the limit into one of form $0 \cdot \infty$:

x

Example 6: $\lim_{x \to 0^+} x^x$ has the indeterminate form 0^{0} .

Example 7: $\lim_{x\to 0^+} (-\ln(x))^x$ has the indeterminate form ∞^0 .

Example 8: Let *a* be any real number, so that $\lim_{x\to 0} (1+ax)^{1/x}$ has the indeterminate form 1^{∞} .

Comparing Growth Of Functions

Some important cases (that can all be checked using L'Hôpital's Rule):

- (a) $x^n \ll e^x$ for all n.
- (b) In fact, $x^n \ll a^x$ for all *n* and all a > 1.
- (c) $\log_a(x) \ll x^n$ for all *n* and all a > 0.

Indeterminate Forms Involving Trigonometric Functions

Example 9: $\lim_{x\to 0} \frac{\tan(x)\sin(5x)}{x\sin(7x)}$ has the indeterminate form $\frac{0}{0}$.

