Section 4.5
 L'Hôpital's Rule and Indeterminate Forms

(1) Refresher: Determinate and Indeterminate Forms
(2) L'Hôpital's Rule
(3) Comparing Growth of Functions

The Form of a Limit

The form of a limit $\lim _{x \rightarrow c} \square$ is the expression resulting from substituting $x=c$ into \square.

The form of a limit is not the same as its value! It is a tool for inspecting the limit.

$$
\begin{array}{lll}
\lim _{x \rightarrow 0} x^{\arctan (x)}: & \text { form } 0^{0} & \lim _{x \rightarrow \infty}(1+x)^{\frac{1}{x}}: \text { form } \infty^{0} \\
\lim _{x \rightarrow 0} \cos (x)^{\frac{1}{x}}: \text { form } 1^{\infty} \quad \lim _{x \rightarrow 0^{+}} \ln (x) \sin (x): \text { form } 0 \cdot \infty
\end{array}
$$

Indeterminate Forms are called indeterminate because they represent limits which may or may not exist and may be equal to any value. The form itself does not indicate the value of the limit. There are 7 indeterminate forms.

$$
\begin{array}{ccc}
\frac{0}{0} & \pm \frac{\infty}{\infty} & \pm 0 \cdot \infty \\
1^{\infty} & 0^{0} & \infty^{0} \\
& \infty-\infty &
\end{array}
$$

Indeterminate Forms

Limits of form $\frac{0}{0}$:

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

$$
\lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{x}=0
$$

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x^{2}} \text { DNE }
$$

Limits of form $\frac{\infty}{\infty}$:

$$
\lim _{x \rightarrow \infty} \frac{x+1}{x}=1
$$

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}=0
$$

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x}=\infty
$$

These two indeterminate forms are like "tugs-of-war" between the numerator and denominator. Which of the two grows faster?

L'Hôpital's Rule

L'Hôpital's Rule

If f and g are differentiable near $x=a$ and either
(i) $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$, or
(ii) $\lim _{x \rightarrow a} f(x)= \pm \infty$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$,
then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

The rule applies equally for one-sided limits.

Example 1:

These limits are of form $0 / 0$. The steps marked $\stackrel{L H R}{=}$ use L'Hôpital's Rule.
(a) $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$
(b) $\lim _{x \rightarrow 0} \frac{\ln \left(x^{2}+1\right)}{x}$
(c) $\lim _{x \rightarrow 2} \frac{x^{4}+2 x-20}{x^{3}-8}$

Example 2:

These limits are of form $\frac{\infty}{\infty}$. The steps marked $\stackrel{L H R}{=}$ use L'Hôpital's Rule.
(a) $\lim _{x \rightarrow \infty} \frac{3 x-7}{6 x+5}$
(b) $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}$
(c) $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\ln (\sin (x))}$

Example 3:

Sometimes it is necessary to perform L'Hôpital's Rule multiple times.
(a) $\lim _{x \rightarrow 0} \frac{e^{x}-x-1}{\cos (x)-1}(0 / 0)$
(b) $\lim _{x \rightarrow \infty} \frac{-3 x^{3}-20 x^{2}}{2 x^{3}+x+7}(\infty / \infty)$

L'Hôpital's Rule: Warnings

Warning \#1:
L'Hôpital's Rule only applies to the indeterminate forms $0 / 0$ and ∞ / ∞. Before applying L'Hôpital's Rule to a limit, verify that it is of one of those two forms.

Warning \#2:
Don't confuse L'Hôpital's Rule with the Quotient Rule! They have completely different uses.

- L'Hôpital's Rule is for evaluating limits.
- The Quotient Rule is for evaluating derivatives.

The Form $\infty-\infty$

To evaluate limits with the form $\infty-\infty$, use algebra to rewrite the expression as a quotient, often in $0 / 0$ or ∞ / ∞ form. Often this means finding a common denominator.

Example 4: To evaluate $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\csc (x)\right)$, which has the form $\infty-\infty$, rewrite it:

$$
\frac{1}{x}-\csc (x)=\frac{1}{x}-\frac{1}{\sin (x)}=\frac{\sin (x)-x}{x \sin (x)}
$$

This is an 0/0 form, so we can apply L'Hôpital's Rule:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\sin (x)-x}{x \sin (x)} \stackrel{L H R}{=} & \lim _{x \rightarrow 0^{+}} \frac{\cos (x)-1}{x \cos (x)+\sin (x)}(0 / 0) \\
& \stackrel{L H R}{=} \lim _{x \rightarrow 0^{+}} \frac{-\sin (x)}{-x \sin (x)+2 \cos (x)}=0
\end{aligned}
$$

The Form $0 \cdot \infty$

Limits with the form $0 \cdot \infty$ can easily be converted to $0 / 0$ or ∞ / ∞ form. If $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=\infty$, then

$$
\lim _{x \rightarrow a} \underbrace{f(x) g(x)}_{0 . \infty \text { form }}=\lim _{x \rightarrow a} \underbrace{\frac{f(x)}{\left(\frac{1}{g(x)}\right)}}_{0 / 0 \text { form }}=\lim _{x \rightarrow a} \underbrace{\frac{g(x)}{\left(\frac{1}{f(x)}\right)}}_{\infty / \infty \text { form }}
$$

Examples (5):
(a) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
(b) $\lim _{x \rightarrow \frac{\pi}{2}^{-}}\left(x-\frac{\pi}{2}\right) \tan (x)$

Indeterminate Forms Involving Exponents

For limits of the forms $1^{\infty}, 0^{0}$, or ∞^{0}, the key step is to rewrite

$$
\lim _{x \rightarrow c} \boldsymbol{\square}=\lim _{x \rightarrow c} e^{\ln (\boldsymbol{\square})}=\lim _{x \rightarrow c} \exp (\ln (\boldsymbol{\square}))=\exp \left(\lim _{x \rightarrow c} \ln (\boldsymbol{\square})\right)
$$

- The second equality is valid by the Limit Laws (see §2.4) because e^{x} is continuous everywhere.
- The "exp" notation avoids humongous expressions in superscript.

This technique changes the limit into one form $0 \cdot \infty$:

$$
\begin{array}{ccccc}
1^{\infty} & \rightarrow & e^{\ln \left|1^{\infty}\right|} & \rightarrow e^{\infty \cdot \ln (1)} & \searrow \\
0^{0} & \rightarrow & e^{\ln \left|0^{0}\right|} & \rightarrow & e^{0 \cdot \ln (0)} \\
\infty^{0} & \rightarrow & e^{\ln \left|\infty^{0}\right|} & \rightarrow & e^{0 \cdot \ln (\infty)}
\end{array} \nearrow
$$

Indeterminate Forms Involving Exponents

Example 6: $\lim _{x \rightarrow 0^{+}} x^{x}$ has the indeterminate form 0^{0}.

Indeterminate Forms Involving Exponents

Example 7: $\lim _{x \rightarrow 0^{+}}(-\ln (x))^{x}$ has the indeterminate form ∞^{0}.

Indeterminate Forms Involving Exponents

Example 8: Let a be any real number, so that $\lim _{x \rightarrow 0}(1+a x)^{1 / x}$ has the indeterminate form 1^{∞}.

Comparing Growth Of Functions

We say that f grows faster than g if
(i) $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\infty$, or equivalently
(ii) $\lim _{x \rightarrow \infty} \frac{g(x)}{f(x)}=0$.
(Notation: $g \ll f$.)

Some important cases (that can all be checked using L'Hôpital's Rule):
(a) $x^{n} \ll e^{x}$ for all n.
(b) In fact, $x^{n} \ll a^{x}$ for all n and all $a>1$.
(c) $\log _{a}(x) \ll x^{n}$ for all n and all $a>0$.

Indeterminate Forms Involving Trigonometric

 FunctionsExample 9: $\lim _{x \rightarrow 0} \frac{\tan (x) \sin (5 x)}{x \sin (7 x)}$ has the indeterminate form $\frac{0}{0}$.

